
40 © 2015 SRESA All rights reserved

1. Introduction

Structural displacement or deformation
information is particularly important when permanent
deformation occurs and is often more accurate than
acceleration measurements in lower-frequency
ranges. However, current SHM technologies rarely
support displacement monitoring, primarily due to
the difficulty in measuring absolute displacement;
which mostly require fixed reference points. Though
the reference-free nature of GPS-based methods
conveniently measures absolute displacements,
relatively low sampling rates are only available and
the associate cost for survey-level dual-frequency
GPSs that support sub-centimeter accuracy is still
too high for routine use [1~3]. Single-frequency, low-
cost GPSs, generally used for navigation purposes,
have shown the feasibility for dynamic displacement
monitoring [4], however, the technologies of single-
frequency GPSs have not been sufficiently advanced
yet for practical use in SHM applications.

Computer vision-based methods have received
broad interests in measuring static and dynamic
displacements of structures due to various merits of
the methods. The capability of non-contact, distant
measurement of absolute displacements significantly
reduces the difficulties in providing stationary

Non-contact and Real-time Dynamic Displacement Monitoring
using Smartphone Technologies

Jae-Hong Min1, Nikolas J. Gelo2, and Hongki Jo1*
1Department of Civil Engineering and Engineering Mechanics,

2Department of Computer Science, The University of Arizona, Tucson, AZ 85721, USA.
Email: jaehongmin@email.arizona.edu

Abstract

Many of the available approaches for Structural Health Monitoring (SHM) can benefit from the
availability of dynamic displacement measurements. However, current SHM technologies rarely
support dynamic displacement monitoring, primarily due to the difficulty in measuring absolute
displacements. The newly developed smartphone application in this study allows measuring
absolute dynamic displacements in real time using state-of-the-art smartphone technologies, such
as high-performance graphics processing unit (GPU), in addition to already powerful CPU and
memories, embedded high-speed/resolution camera, and open-source computer vision libraries. A
carefully designed color-patterned target and user-adjustable crop filter enable accurate and fast
image processing, allowing up to 120Hz frame rate for complete displacement calculation. The
performances of the developed smartphone application are experimentally validated, showing
comparable results with those of conventional laser displacement sensor.

Key words: structural health monitoring, smartphone technology, computer vision, dynamic
displacement monitoring, real time image processing

reference points; ensuring such reference points is
a critical challenge for contact-type displacement
sensors [5~8]. Moreover, these vision-based measuring
systems are available at relatively low cost, combining
a video camera, an optical zoom lens, lighting lamps
and a precision target attached to the location of
interest on the structures [9].

In most civil engineering applications, computer
vision-based measuring systems have been considered
particularly interesting for low-frequency vibration
measurements. One of the reasons is that amplitudes
of the high-frequency displacements are generally
smaller than those of low-frequency displacements,
causing difficulty in identifying the vibration with the
limited resolution of conventional cameras. Another
important reason is that the maximum frame rates
(fps: frames per second) of the most of conventional
video cameras are limited to 30 ~ 60fps at the best
resolutions [10, 11]. Though such low frame rates
would be sufficient for measuring low-frequency and
high-amplitude vibrations of long-period structures,
such as high-rise buildings and long-span cable-
supported bridges, ensuring higher frame rate is still
essential for appropriate monitoring the dynamic
behavior of many of small-to-mid scale common
civil structures.

 Life Cycle Reliability and Safety Engineering
Vol.4 Issue 2 (2015) 40-51

41 © 2015 SRESA All rights reserved

One of the issues in these types of dynamic
measurements is that anti-aliasing filters are not
available for vision-based measuring systems. The
only way to minimize such aliasing problem is to
increase the frame rate. A high-speed camera allowing
up to 2000fps has been investigated for dynamic
displacement monitoring [12]. However the practical
use of such expensive cameras for civil engineering
applications is still in question, because the level of cost
and the difficulty of achieving real-time processing can
be the main restraint for the success of the technique
itself.

Recent advances in smartphone technologies
provide various onboard sensing capabilities,
including, but not limited to, accelerometer,
temperature sensor, GPS, altimeter, gyroscope, and etc.
Particularly, embedded cameras show great advances
in providing higher-resolution and higher-speed
video features, often better than many conventional
camcorders. Moreover, their powerful processors and
memories allow for onboard processing capabilities,
eliminating the need for additional computers to
perform extensive image processing. However, such
advanced vision and embedded processing capabilities
of smartphones have not been effectively utilized for
dynamic displacement monitoring applications yet.

This study investigates the feasibilities of such
smartphones for dynamic displacement monitoring
of civil structures. A new smartphone application is
developed for real-time measurement and processing
of dynamic displacements using the rear camera of the
iPhone 6 Plus and OpenGL (Open Graphic Library)

in the iOS environment, which enables easy and low-
cost monitoring of absolute dynamic displacements.
For real-time applications, a user-selectable crop
filter is implemented to optimize the image size and
minimize associated processing time, considering the
size and distance of target, which allow up to 120fps.
To clearly discriminate from the background, carefully
designed targets with unique color patterns are used.
To make this smartphone application be more widely
embraced for practical uses, several useful features,
such as autonomous detection of target centroid,
email transmission of measured data, user-adjustable
color hue range, high-precision time stamps, and
automated onboard calibration of measured data
are implemented. Following a description of the
software developed herein, the performances of the
smartphone application are experimentally validated
with shake table tests under both indoor and outdoor
conditions.

2. State-of-the-art Smartphone Technologies

Recent advances in smartphones technologies
provide many attractive features in addition to its
original function for mobile telecommunication
(see Table 1). Various types of sensors embedded
in the smartphones allow the devices to be used for
various purposes; for example, motion sensing for
game software, proximity sensing for screen power
saving, GPS for navigation, fingerprint sensor for
device security, and so on. Most of all, what makes the
smartphone actually be smart is its onboard computing
capability. The speed and size of their microprocessors

Table 1. Hardware specifications of example smartphones

iPhone 5 [13] iPhone 5S [14] iPhone 6/Plus [15] Galaxy S5 [16] LG G3 [17]
Release
Date

9/12/2012 9/20/2013 9/19/2014 4/11/2014 5/28/2014

CPU Apple A6:32-bit
1.3 GHz dual core

Apple A7:64-bit
1.3 GHz dual-core

Apple A8:64-bit 1.4
GHz dual-core

1.9 GHz quad-core
Cortex-A15
1.3 GHz quad-core
Cortex-A7

2.5 GHz
quad-core
Krait 400

Memory 1 GB LPDDR2-
1066 RAM

1 GB LPDDR3
RAM

1 GB LPDDR3 RAM 2 GB LPDDR3 RAM 3 GB (for 32
GB model)

Other
Sensors

- Gyroscope
- Accelerometer
- Digital compass
- Proximity sensor
- Ambient light
sensor

- Gyroscope
- Accelerometer
- Digital compass
- Proximity sensor
- Ambient light
sensor

- Gyroscope
- Accelerometer
- Digital compass
- Proximity sensor
- Ambient light sensor
- Barometer

- Gyroscope
- Accelerometer
- Digital compass
- Proximity sensor
- Ambient light sensor
- Barometer
- Infrared (IR) LED sensor

Jae-Hong Min et al. / Life Cycle Reliability and Safety Engineering Vol.4 Issue 2 (2015) 40-51

42 © 2015 SRESA All rights reserved

Table 2. Camera performances of example smartphones

iPhone 5 [13] iPhone 5S [14] iPhone 6/Plus [15] Galaxy S5 [16] LG G3 [17]

Rear
Camera

- 8 MP iSight
camera with 1.5µ
pixels
- Autofocus
- ƒ/2.4 Aperture
- True tone flash
- Hybrid IR filter

- 8 MP iSight camera
with 1.5µ pixels
- Autofocus
- ƒ/2.4 Aperture
- True tone flash
- Hybrid IR filter

- 8 MP iSight camera
with 1.5µ pixels
- Autofocus with focus
pixels
- ƒ/2.2 Aperture
- True tone flash
- Hybrid IR filter

- 16 MP
- Autofucos
- ƒ/2.2 Aperture
- LED flash

- 13 MP
- Hybrid
Infrared
Autofocus
- ƒ/2.4 Faper-
ture
- Dual tone
LED flash

HD Rear
Camera
Capture

- 720p@30/60fps
- 1080p@30fps

- 720p@30/60/120
fps
- 1080p@30fps

- 720p@30/60/120/
240fps
- 1080p@30/60fps

-
1080p@30/60fps
- 4K@30fps

- 720p@60fps
- 1080p@30fps
- 4K@30fps

GPU - PowerVR
SGX543MP3

- PowerVR G6430
(four cluster @ 450
MHz)

- PowerVR Series 6
GX6450 (4 clusters)

- ARM Mali
T628MP6

- Adreno 330

and memories are sufficiently comparable with decent
laptop computers.

The particular focus of this study, related with
smartphones’ performance, is in the cameras (see
Table 2). For example, the latest version of Apple’s
iPhone (i.e. iPhone 6/Plus) supports up to 240 fps at
720p resolution and 120 fps at 1080p (HD) resolution.
Samsung’s Galaxy S5 and LG’s G3 support up to 4K
(UHD) resolution, but with slower frame rate (30
fps). Moreover, the integrated graphics processing
unit (GPU) can rapidly manipulate and alter memory
to accelerate the creation of images in a frame buffer
intended for output to a display.

For this study, Apple’s iPhone is selected as its
higher frame rate (up to 240 fps) is a more reasonable
option for reducing the aliasing issues in dynamic
displacement measurements. Moreover, Apple iOS
mobile operating system is more appropriate for the
development of this application because within a
year of its release about 91% of Apple iOS users were
running iOS 7, Apple’s latest release. Compare this
with Android where five of the latest releases each hold
about a 10% share of installations [18]. This operating
system fragmentation often leads to developers having
to support a variety of new and deprecated APIs to
accomplish the same tasks. Although Google has
taken steps to minimize the effects of operating system
fragmentation [19], avoiding compatibility issues was
avoidable.

The issues of fragmentation for Android devices
are prevalent not only in software but also in the

devices’ hardware. For example, when comparing
the pictures taken with 4 different Android devices
under the same conditions, the differences in color
and brightness are immediately clear [20]. The core
functionality of the application depends on computer
vision analysis and introducing variability into this
process would make the initial development of the
application more difficult.

Developing the app with consistent performance
was established as a goal early on in the development
process. By eliminating variables in the devices on
which the application ran, the first version of the
application could be more easily be developed.
Developing the app so that it would perform
consistently on devices was necessary for the first
version. Developing for Android is a goal for future
iterations.

3. Object Tracking using Computer Vision

To track the objects using computer vision, i) the
objects of interest should be detected in video sequence
first, then ii) classify the detected objects, and iii) track
the movements of identified targets. Though this is
a straightforward process, practical implementation
of this object tracking is not that simple, because of
possible variability of color, shape, and texture of
the objects for each video frame [21]. Many different
methods for object tracking using computer vision
have been developed for past few decades, which can
generally be divided into three categories; i) region-
based methods, ii) contour/edge-based methods, and
iii) point-based methods.

Jae-Hong Min et al. / Life Cycle Reliability and Safety Engineering Vol.4 Issue 2 (2015) 40-51

43 © 2015 SRESA All rights reserved

Region-based methods basically utilize the color
features of the objects, as all objects can be represented
by their specific color distribution. This method may
not be efficient when several objects move at the same
time in a video frame, because of the possible occlusion
among the moving objects. However, this approach is
well known to be computationally much faster than
other algorithms and effective for tracking fast moving
objects.Despite the shape information possibly being
distorted by fast movement, the objects can be traced
due to their color [22, 23].

Shape of an object can be characterized by its
contour/edge/outline. Edge-based tracking can be
represented in active contour model [24] and is known
to be efficient in tracking moving objects, because a
number of points distributed along the edge of the
object can provide higher probability of accurate
tracking. However, the performance of this edge-based
approach is very sensitive to the initial shape of the
object and not so good for 3D movement tracking.

Specific points can also be the characteristic feature
of the object. This feature points should be sufficiently
different from its neighbor. Usually, such feature
points are extracted and detailed by descriptors that
can recognize the object [25, 26]. Then the extracted
feature points are matched from sequential frames
to track the object. The success of this approach is
dependent on how well the feature points of the object
are extracted and matched, because many other similar
points can be regarded as the feature points in the next
frame, causing uncertainty.

If desktop or laptop computers are used for
processing the images, real-time operation of the
vision-based measuring systems may not be an issue.
For example, a simple test shows total processing time
per each frame to measure the dynamic movement
of a target is just about 1~3 millisecond (ms) using a
region-based object tracking method with a desktop
computer that has Intel’s i7-4770 CPU (quad core 64bit
3.40Hz), Nvidia GeForce GTX 650 Ti graphic card
(GDDR5 128-bit, OpenGL 4.3, Memory Bandwidth
86.4 GB/sec), and 16GB RAM. Though the hardware
capabilities of recent smartphones are comparable to
some laptop computers, the performance is less than
conventional PCs. Considering the minimization of the
processing time as the key factor in realizing higher
frame rate for dynamic displacement monitoring using
smartphones, an appropriate object tracking method
should be selected.

4. OpenCV vs. OpenGL (GPUImage)

The OpenCV library [27] is a popular open-
source library for computer vision applications
with thousands of optimized algorithms. The iOS-
compatible release is written in C++, which can
be compiled alongside Objective-C (the language
used to write iOS apps), and contains many classes
for easily integrating the device’s camera with the
OpenCV library. Despite OpenCV being a powerful
computer vision library, its main drawback for usage
in developing a real-time computer vision application
is its lack of usage of the iPhone’s GPU. Instead, all
image processing is performed on the iPhone’s CPU.
Simple image processing can be accomplished on the
CPU in real-time such as adjusting the RGB values or
inverting an image. But more complex algorithms like
corner detection are more expensive and cannot be
performed in real-time in the CPU side of iPhone.

In order to utilize the GPU to perform complex
computer vision analysis, the GPUImage library
[28] was used in this study. The GPUImage applies
GPU-accelerated filters and other effects to images.
Filters used with GPUImage are written using the
OpenGL Shading Language, using OpenGL ES 2.0
(iPhone 5 and iPhone 5S) or 3.0 (iPhone 5S and later),
and are compiled at runtime. The combination of
using these filters and processing them on the GPU
allows complex image analysis algorithms to run at
much higher speeds. Table 3 shows a comparison of
rendering speeds on the CPU and GPU.

Figure 1. Example image rendering process using GPUImage
Source: http://nshipster.com/gpuimage/

Table 3. Rendering speed comparisonGPU vs.
CPU (larger fps is better)

Calculation GPU (fps) CPU (fps)
Thresholding x 1 60.00 4.21
Thresholding x 2 33.63 2.36
Thresholding x 3 1.45 0.05

Source: http://nshipster.com/gpuimage/

By specifically targeting the hardware of the
iPhone in this study, GPUImage allows for faster
image processing compared to that of the CPU. To
accomplish image rendering on the GPU, GPUImage
is built upon an OpenGL rendering pipeline that takes
a source image, passes it through a series of filters (or
OpenGL shaders), and produces an output (see Figure
1). The simple integration of custom OpenGL shaders

Jae-Hong Min et al. / Life Cycle Reliability and Safety Engineering Vol.4 Issue 2 (2015) 40-51

44 © 2015 SRESA All rights reserved

in a full-sized, 720×1280p, image in real-time. Because
of the large amount of pixels that had to be processed
in each frame, a crop filter was introduced into the
rendering pipeline that could crop an image from
720×1280p to 720×100p. The result was a significant
drop in processing time per frame for the image
processing filters.

5.3 Target design

The color adjustment filters could successfully
identify a target (e.g. red-colored targets) in an image
by filtering the colors in the incoming image and
produce a binary image. The binary image indicated
all areas that passed the filter by highlighting the
valid areas as white and all ignored areas were
black. Despite the ability to identify a target with a
certain color, much of the resulting output from color
adjustment filters contained false positives of features
in the image that were not apart of the intended target
but whose RGB values could pass the filter. Similarly,
many of the image processing filters like the Harris
Corner Detection filter could identify a square target
by its corners but its resulting output would often
include highlighted areas that met the threshold for
detecting a corner but were not apart of the target.

The best target to identify had to be both unique
in its appearance and easy and fast to identify by an
OpenGL Shader. While researching for good targets
to use for identification, the yellow and black color
pattern used in crash test simulations by automobile
manufacturers became the best choice (see Figure 2).
The pattern could be both easily identified by its color
pattern and by the corners and edges of the target.

Identifying
the target was
best found by
examining the
h u e v a l u e s
of each pixel
in the image.
While the hue
values of a color
slightly change
w i t h m i n o r
variations, the
RGB values of
colors can change
d r a m a t i c a l l y
even with minute
changes in their
appearance. By

Figure 2. Yellow-black color pattern target
on a dummy for car crash test

Source: http://www.carkoon.com/blog/
nhtsa-introduces-new-crash-test-dummy-

child-safety-seat-evaluation

that GPUImage creates allows for easy access to the
often complicated OpenGL rendering pipeline.

5. Samrtphone App Development for Real-time
Dynamic Displacement Monitoring

5.1 GPUImage library

The iOS platform and the GPUImage library were
established as the starting point for the development
of the application. Integrating the GPUImage library
was accomplished using the Cocoapods dependency
manager. After the base application was configured,
all future modifications to the application were
managed using a private GitHub repository.

Various object tracking methods have been
explored under the iOS environment to effectively
detect the target of interest and track its centroid
movements of each frame front the camera. This
started with examining the filters included in the
GPUImage library.

Each filter in GPUImage uses OpenGL shaders
to process the incoming image and produces a
resulting image that can be extracted from the GPU
and presented to the user. Color adjustment filters,
such like RGB Levels, Hue, and Luminance Threshold
filters, were studied to learn how OpenGL can
manipulate the colors of an incoming frame from the
camera. The color adjustment filters were able to run
very quickly because of their heavy reliance on the
GPU for manipulating the image. Additionally, image
processing filters such as the Harris Corner Detection,
Sobel Edge Detection, and Hough Transform Line Detection
filters showed how computer vision algorithms could
be implemented with OpenGL. The main difference
between the color adjustment and image processing
filters was the reliance of the image processing filters
on the CPU to get access to the raw pixel data from
the GPU and the rasterization across each pixel in
the image per frame processed. This bottleneck was
necessary so that data like the number of corners and
the locations of these corners in the image could be
determined. By simply running the image processing
filters with just their OpenGL shaders and not doing
any processing on the CPU, the filters were able to
run very quickly. However, introducing the reading
of raw pixel data from the GPU onto the CPU led to
significant drops in the filters’ performance.

5.2 Crop filter

None of the filters included with the GPUImage
library could accurately and efficiently identify targets

Jae-Hong Min et al. / Life Cycle Reliability and Safety Engineering Vol.4 Issue 2 (2015) 40-51

45 © 2015 SRESA All rights reserved

filtering an image by using a hue range rather than an
RGB range, changing the colors that were to be filtered
became much easier to change on the fly. The hue scale
ranges from 0 to 360 (see Figure 3) and by passing
upper and lower hue values to an OpenGL shader,
the image could filter out all hues outside of a range.
In the OpenGL
s h a d e r , t h e
v a l u e o f a
pixel’s color
h a d t o b e
converted from
RGB to hue
using a simple
algorithm. This
was necessary
because of the
way OpenGL
handles colors.
For each pixel being processed, OpenGL stores its
colors value in RGB. As a result, in order to filter out
hue values outside of a given range, the shader must
calculate the pixel’s hue value.

To identify the center of the color patterned
target, a combination of using two hue ranges and
the GPUImage3x3ConvolutionFilter were required.
Two hue ranges were required so that both of the
colors in the target could be identified. So a new
custom filter was developed by modifying the
GPUImage3x3ConvolutionFilter, so that the hue values
of neighboring pixels in trial-directions could be
accessed as shown in the Figure 4. The neighboring
pixels of a given pixel were used for identifying the
center of the target. For example, as shown in the

Figure 3. Hue chart of color
(Source: http://www.fmwconcepts.com/

imagemagick/huemap/)

Figure 4.Modified GPUImage3x3 Convolution Filter

Figure 5, near the center of the left target, the blue
and yellow colors border each other. This pattern of
alternating colors (e.g. hue value difference between
blue and yellow: 180) can be used to effectively
identify the center of the target.

Figure 5.Example pattern of alternating colors: yellow &blue (left),
green &purple (right)

5.4 Target centroid calculation

Then, pixels near the center of the target that could be
identified using this color pattern were highlighted
in the OpenGL shader. Pixels that were not identified
by the shader as being pixels near the center of the
target were not highlighted. After the shader had
processed a frame, the CPU would load the processed
image into memory and find all of the pixels that were
highlighted. The 2D coordinates of each highlighted
pixel were averaged to find the center of the target.
The coordinate of the center of the target would be
recorded by the application for the use of calculating
the displacement of the target at any given frame.

5.5 Real-time displacement calculation and
onboard calibration

To calculate real displacement values, two of these
targets were required. The second target used the same
pattern but with different colors as shown in the Figure
5 (right). The colors used in the second target had
similar characteristics to those in the first target in that
the level of contrast between the two colors (i.e. green
& purple) was very high. By using high contrast colors,
the two colors in each target could easily be identified
and the risk of the two colors blending together was
reduced. By knowing the distance between the two
targets in the frame and keeping the distance fixed, the
real displace ment of the two targets can be calculated.
With GPUImage, the custom OpenGL shader for
finding the center of the two targets, and the ability to
calculate real displacement of the target in the camera
frame, the core functionality of the application was
complete.

5.6 Real-time display of processed displacement

Displaying the calculated information on the
screen to the user required Apple’s Core Animation
library and the open source Core Plot library. Core
Animation was used to display three dots on the
screen that would show where the centers of the
targets were. The first two dots were located at the

Jae-Hong Min et al. / Life Cycle Reliability and Safety Engineering Vol.4 Issue 2 (2015) 40-51

46 © 2015 SRESA All rights reserved

center of each colored target and a third dot was placed
in between the two targets to indicate the center of the
entire pattern (see the top of Figure 6).

Figure 6.Screen shot of the developed iOS app: before running the app
(top), real-time display of measured displacement (bottom)

Once the application is started, a forth dot is
appeared where the third dot was initially located,
which is fixed. Then actual displacement is calculated
with respect to the fourth dot (i.e. distance between the
third and fourth dots), and is displayed at the bottom
of the application screen in real time as shown in the
bottom of Figure 6.

5.7 User configurable setting parameters

With each of these components added to the
application, many parameters were introduced to
control the functionality of each component. A settings
feature was introduced into the application that
managed how each component should perform. The
settings were separated into three sections: Camera,
Filter, and Graph. The options under each section are
listed in the Table 4.

5.8 Setting parameter optimization

While the application could identify the target in
the camera frame and calculate its displacement at
each frame, its performance was slightly above the
target of being below 10 milliseconds on the iPhone
6 Plus. The slowest portions of the application were
identified through profiling the application using the

Table 4. Setting parameters

Camera Settings

Frame Rate Manually adjust the camera’s frame
rate 30, 60, 120 and 240 fps.

Crop Size
(width &
height)

Change the size of the crop filter
Width (px):100/200/400/720/1280
Height (px):100/200/400/720

Auto-Focus
Range

Change the autofocus range of the
camera between near, far and none.

Show
Camera

View

Whether or not the feed from the
camera should be shown on the
screen.

Show
Benchmark

Whether or not the current and
average processing time from cap-
turing to filtering, to displaying
the image should be calculated and
shown on the screen.

Filter Settings

Show
Filtered

View

Whether the resulting output from
the OpenGL shader should be shown
in place of the raw camera view.

Pixel
Search

Distance

The distance between neighboring
pixels used in the OpenGL shader.

Set Filter
Colors

Select the hue ranges of the two
colors used in each target.

Graph Settings
Show Graph
View

Whether the graph should be
updated with displacement
calcultions from each frame.

Target
Distance (cm)

The distance (in centimeters) of the
two colored targets in the camera
frame.

Show X & Y
Displacement

Whether the X, Y, or both
displacement lines should be
calculated and shown on the graph.

Instruments software included with Apple’s Xcode. By
identifying potential areas of slow performance and
memory leaks the application’s processing time from
capture to display was drastically increased.
• The biggest improvement in processing time was

achieved simply by not displaying the camera
feed on the screen. This resulted in about a 2 to 3
millisecond drop in processing time.

Jae-Hong Min et al. / Life Cycle Reliability and Safety Engineering Vol.4 Issue 2 (2015) 40-51

47 © 2015 SRESA All rights reserved

• Another improvement in processing time was
achieved by running all camera related operations
on a separate thread and running all UI (user
interface) operations on the main thread.

However, much of the slowest portions of the
application could not be resolved so easily. Portions
of the application could not be removed as they were
integral to the application. Reducing the processing
time in components like reading the raw pixel data
to the CPU from the GPU, calculating the center of
each target on the CPU by averaging the coordinates
of all found pixels, and performing displacement
calculations were difficult due to their lack of
complexity and necessity to the functionality of the
application.

After resolving performance issues in the
application, the application’s processing time was
reduced to below 7 milliseconds on the iPhone 6 Plus.
Due to the constraints of the hardware on the iPhone
5, such results could not be achieved. The Table 5
shows a breakdown of the processing time (average
from several tests) for the application.

Table 5.Processing time breakdown
(with 720×100p @ 120 fps)

Step iPhone 5 iPhone 6
Plus

GPUImage (no display) 1.10 ms 1.10 ms

GPUImage + Crop Filter
(no display)

1.34 ms 1.42 ms

GPUImage + Crop Filter +
Custom Filter (no display)

35.2 ms 6.30 ms

Total w/ Displaying 37.1 ms 11.25 ms

Total w/o Displaying 35.2 ms 6.30 ms

5.9 Email transmission of measured data

Additional features were developed to allow the
user to view the graph full screen after a recording
session had ended and to export the collected data to
a CSV file that can be emailed to a personal account for
further analysis. These changes made the application
suitable for testing and practical use.

Figure 7 shows the simplified block diagram of the
developed iOS application in this study.

6. Experimental Validations

In order to evaluate the performances of the
developed iOS app, including sampling time accuracy

Figure 7. Software block diagram of developed iOS app

and the ability to track the dynamic movements of
targets, a series of laboratory-scale tests have been
carried out using a shaking table with single-frequency
and multi-frequency sinusoidal motions.

6.1 Experiment setup

An APS Dynamics’ APS 400 Electro-Seis shaker
was used for the evaluation tests (see Figure 8). The
input excitation of the shaker was amplified by the
APS 145 amplifier. To compare the performance of

the developed iOS
App with that of a
conventional dis-
placement sensor, a
laser displacement
sensor (KEYENCE,
IL-100, 4-μm reso-
lution) was used
as a reference. The
analog voltage out-

puts from the laser sensor were measured by the
National Instruments’ NI-9234 ADC module (24-bit

Figure 8. Shaking table test setup

Jae-Hong Min et al. / Life Cycle Reliability and Safety Engineering Vol.4 Issue 2 (2015) 40-51

48 © 2015 SRESA All rights reserved

Delta-sigma ADC) with CompactDAQ chassis (cDAQ-
9178 model). At the same time, NI-9269 voltage output
module, which was housed in the same CompactDAQ,
was used to generate the excitation signals for the
shaker.

To overcome the limited resolution of the
iPhone camera for long-distance and small-target
measurements, optical zoom lenses were used in
conjunction with the iPhone (see Figure 9). With
commercially available low-cost zoom lenses,

Figure 9.12× (left) and 50× (right) optical zoom lens designed
for smartphones

precisely designed smartphone cover cases that allow
easy connection of the lens to the phone come with
the package. 12× and 50× zoom lens were considered
initially, but the 50× lens only was used for this
tests.

6.2 Sampling Time Accuracy

Consistency of the sampling rate or sampling time
is important to ensure the quality of dynamic vibration
measurements. Even when conventional analog-
to-digital converters are used, the time intervals
between adjacent samples are not always consistent
[29]. Particularly, because this kind of computer
vision-based measuring systems handle extensive
image processing, making sure the consistency of the
sampling time is important.

Figure 10 shows the example record of the sampling
time for 60fps and 120fps cases (720×100p crop filter
used for both). The case with 60fps (dotted line) shows
very consistent sampling time of 16.67 milliseconds
over entire measurements. However, when 120fps
(solid line) was used, little inconsistencies are observed
in the beginning of the measurements for couples of
samples, of which phenomenon is attributed by the
dropped samples (see the bottom of Figure 10). To
achieve 120fps, all the image processing required to get
the displacement information should be done within

Figure 10.Sampling time accuracy (bottom: zoomed around
sample # 350)

8.33ms for each frame. If the processing takes more
than 8.33ms, then the software automatically drops
the corresponding sample out, to not cause any delay
or interference to following samples. Because the case
of 60fps ensures sufficient time for processing, such
dropped samples were not observed in this test.

6.3 Shake Table Tests

For the initial shake table tests indoors, the iPhone
with the zoom lens was placed 3.0m away from the
target attached on the shake table. The target size was
1.0×2.5cm, which was composed of two rectangular
alternating color patterns having 1.5cm center distance
between them. 720×100p crop filter was used to track
the target in a horizontal direction in an optimized
way. The distance between the two color patterns
(i.e. 1.5cm) was occupied by about 300~400 pixels,
corresponding resolution for this particular set up
could be estimated about 0.0375~0.05mm; actual size
of each pixel was autonomously calibrated in the
software and used for displacement calculation.

Figure 11 shows the shake table test results for the
1Hz, 10Hz, 20Hz sinusoidal excitations, and multi-

Jae-Hong Min et al. / Life Cycle Reliability and Safety Engineering Vol.4 Issue 2 (2015) 40-51

49 © 2015 SRESA All rights reserved

tone excitation composed of 1~20Hz (0.2Hz step)
sinusoidal signals. Vibration levels were kept below
2 mm amplitude (peak to peak), and 120 fps was used
in this test. As shown in the Figure 11, the dynamic
displacements measured by the iPhone 6 Plus with
the developed iOS app (solid line in the Figure) agree
very well with those by the laser displacement sensor
(dotted line in the Figure).

Then, the shake table set ups were moved out for
outdoor testing with longer target distance. The shake
table set ups were placed in the outdoor hallway of the
civil engineering building at the University of Arizona,

of which hallway can
ensure up to 50m
clear line-of-sight (see
Figure 12). Target
distance from the
iPhone camera was
33m and the same
zoom lens was used,
but with little bigger
target (4×10cm target
size and 6cm center
distance between
two color patterns).

Figure 13 shows some example results from
the outdoor shaking table tests. The performances
of the iPhone with the developed app were not so
impressive, compared with indoor tests. Particularly
when 120fps was used, substantial high-frequency
noises were observed in the measurements by iPhone
(solid line in the Figure) as shown in the Figure 13 a)
and c), while the results from 60fps were acceptable,
successfully resolving millimeter-level displacements.
Possible reasons for these high-frequency noises in
outdoor tests may be attributed to, but not limited to,
possibilities that i) the captured image at 120fps might
be exposed to less amount of light as the higher frame
rate allows the shorter exposure time, which could
change the color properties in the image, ii) the phone
might be subjected to unexpected high-frequency
vibrations due to wind and/or building vibrations,
resulting in such noisy measurements; though it is a
very little vibration, its effects on the captured images
would be substantial, as the target is located further
and further away.

No matter what the reasons for causing such high-
frequency noises, possible vibrations of the phone itself
should be compensated for the practical use of this
approach for dynamic displacement measurements in

Figure 11.Indoor shake-table test results (3m from target):
(a) 1Hz sine at 120fps, (b) 10Hz sine at 120fps, (c) 20Hz sine at

120fps, and (d) multi-tone sine signal at 120fps.

Figure 12.Shake-table test setup in
the outdoor hallway

Jae-Hong Min et al. / Life Cycle Reliability and Safety Engineering Vol.4 Issue 2 (2015) 40-51

50 © 2015 SRESA All rights reserved

the field. Other sensors (e.g. accelerometer, gyroscope)
embedded in the smartphone (see Table 1) may be
utilized for the phone vibration compensation. To
ensure sufficient amount of light for outdoor tests,
a self-light emitting target (e.g. LED) may be used
for future tests. In addition, a low-pass filtering can
be implemented in the iOS app to reduce such high-
frequency noises.

7. Conclusions

The feasibility of smartphone technologies for
real-time dynamic displacement monitoring has
been investigated in this study. A new smartphone
application was developed under iOS environment
for the iPhone. Various methods for moving object
tracking have been explored, then, a region/
color-based tracking method was adapted in this
study because of its computational efficiency in
image processing and robustness in tracking fast
moving objects. In order to fully utilize the GPU
capabilities of smartphones, the GPUImage library
was used in developing the iOS app. A crop filter
was implemented for users to compromise between
the image size and frame rate without sacrificing
accuracy. Onboard calibration of the image pixel size
to a given-dimension target was implemented in the
developed iOS app. And other various features for
controlling camera, filter, and graph settings and email
transmission of measured data were also incorporated
in this iOS app development. All the functions
required for measuring the dynamic movements of
the target could successfully be operated in real time,
allowing up to 120fps with iPhone 6 Plus. And the
performances of the iPhone hardware and the iOS
app developed herein were experimentally validated.
Although some high-frequency noises were observed
from outdoor shake-table tests, the performances
of the developed app were comparable to those of
a conventional laser displacement sensor, allowing
down to sub-millimeter resolutions at 33m distance
from the target. The possibilities and limitations of
the smartphone (iPhone) and its camera for real-time
dynamic displacement monitoring applications have
been explored in this study, pointing in the direction
of the following research.

References
1. Fujino, Y., Murata, M., Okano, S., and Takeguchi, M.

(2000), “Monitoring system of the Akashi Kaikyo Bridge
and displacement measurement using GPS,” Proc. of SPIE,
nondestructive evaluation of highways, utilities, and pipelines
IV, 229–236.

2. Casciati, F. and Fuggini, C. (2009), “Engineering vibration

Figure 13.Outdoor shake-table test results (33m from target):
(a) 5Hz sine at 120fps, (b) 5Hz sine at 60fps, (c) multi-tone sine

at 120fps, and (d) multi-tone sine signalat 60fps.

Jae-Hong Min et al. / Life Cycle Reliability and Safety Engineering Vol.4 Issue 2 (2015) 40-51

51 © 2015 SRESA All rights reserved

monitoring by GPS: long duration records,” Earthquake
Engineering and Engineering Vibration, Vol. 8(3), 459-467.

3. Yi, T.H., Li, H.N., and Gu, M. (2012), “Recent research and
applications of GPS based monitoring technology for high-
rise structures,” Structural Control and Health Monitoring,
Published online, DOI: 10.1002/stc.1501.

4. Jo, H., Sim, S.H., Tatkowski, A., Spencer Jr., B.F., and Nelson,
M.E. (2012), “Feasibility of Displacement Monitoring using
Low-cost GPS Receivers”, Structural Control and Health
Monitoring, 20(9), 1240-1254.

5. Malesa M, Szczepanek D, Kujawinska M, Swiercz A,
Kolakowski P. (2010), “Monitoring of civil engineering
structures using digital image correlation technique”, ICEM
14–14th International conference on experimental mechanics.
Poitiers, France.

6. Caetano, E., Silva, S., Bateira, J., (2011), “A vision system
for vibration monitoring of civil engineering structures”,
Experimental Techniques, 74–82.

7. Bell E, Peddle J, Goudreau A. (2012), “Bridge condition
assessment using digital image correlation and structural
modeling”, IABMAS’12 – Bridge maintenance, safety,
management, resilience and sustainability, Dubrovnik, Croatia,
330–7.

8. Ji, Y.F. and Zhang, O.W. (2012), “A novel image-based
approach for structural displacement measurement”, Proc.
6th Int. Conf. Bridge Maintenance, Safety Manag., 407–414.

9. Ribeiro, D., Calcada, R., Ferreira, J., and Martins, T. (2014),
“Non-contact measurement of the dynamic displacement of
railway bridges using an advanced video-based system”,
Engineering Structures, 75, 164-180.

10. Ho, H.N., Lee, J.H., Park, Y.S., & Lee, J.J. (2012), “A
Synchronized Multipoint Vision-Based System for
Displacement Measurement of Civil Infrastructures”, The
Scientific World Journal.

11. Fukuda, Y., Feng, M., Narita, Y., Kaneko, S. I., & Tanaka, T.
(2010), “Vision-based displacement sensor for monitoring
dynamic response using robust object search algorithm”,
.Sensors, IEEE, 1928-1931.

12. D’Emilia, G., Razzè, L., & Zappa, E. (2013), “Uncertainty
analysis of high frequency image-based vibration
measurements”, Measurement, 46(8), 2630-2637.

13. “IPhone 5.” Wikipedia. Wikimedia Foundation, 11 Apr.
2014. Web. 04 Nov. 2014 (http://en.wikipedia.org/wiki/
IPhone_5).

14. “IPhone 5S.” Wikipedia. Wikimedia Foundation, 11 May
2014. Web. 04 Nov. 2014 . (http://en.wikipedia.org/wiki/
IPhone_5S).

15. “IPhone 6.” Wikipedia. Wikimedia Foundation, 11 July
2014. Web. 04 Nov. 2014 (http://en.wikipedia.org/wiki/
IPhone_6).

16. “Samsung Galaxy S5.” Wikipedia. Wikimedia Foundation,
11 June 2014. Web. 04 Nov. 2014 (http://en.wikipedia.org/
wiki/Samsung_Galaxy_S5).

17. “LG G3.” Wikipedia. Wikimedia Foundation, 11 Jan. 2014.
Web. 04 Nov. 2014 (http://en.wikipedia.org/wiki/
LG_G3).

18. http://appleinsider.com/articles/14/08/22/while-91-of-
apple-users-run-ios-7-five-different-versions-of-android-
hold-10-share

19. http://www.theguardian.com/technology/2014/
aug/22/android-fragmented-developers-opensignal

20. “LG G3 Review.” TechSpot. N.p., n.d. Web. 07 Nov. 2014
(http://www.techspot.com/review/847-lg-g3/page5.
html).

21. Deori, B., and Thounaojam, D.M. (2014), “A SURVEY ON
MOVING OBJECT TRACKING IN VIDEO”, International
Journal on Information Theory (IJIT), 3(3).

22. Li, L., Ranganath, S., Weimin, H., and Sengupta, K. (2005),
“Framework for Real-Time Behavior Interpretation From
Traffic Video”, IEEE Tran. On Intelligen Transportation
Systems, 6(1), 43-53.

23. Kumar, P., Weimin, H., Gu, I.U., and Tian, Q. (2004),
“Statistical Modeling of Complex Backgrounds for
Foreground Object Detection”, IEEE Trans. On Image
Processing, 13(11), 43-53.

24. Serby, D., Meier, E.K., and Gool, L.V., (2004), “Probabilistic
Object Tracking Using Multiple Features”, IEEE Proc.
of International Conf on Pattern Recognition Intelligent
Transportation Systems, 6, 43-53.

25. Zivkovi, Z. (2004), “Improving the selection of feature
points for tracking”, Pattern Analysis and Applications,
7(2).

26. Lou, J., Tan, T., Hu, W., Yang, H., and Maybank, S.J. (2005),
“3D Model-Based Vehicle Tracking”, IEEE Trans. on Image
Processing, 14, 1561-1569.

27. “OpenCV.” Web. 07 Nov. 2014 (http://opencv.org/).
28. “BradLarson/GPUImage.” GitHub., Web. 04 Nov. 2014

(https://github.com/BradLarson/GPUImage).
29. Nagayama, T., and Spencer, B. F., Jr. (2007). “Structural

health monitoring using smart sensors.” Newmark Structural
Engineering Laboratory (NSEL) Rep. Series No. 1,Univ. of
Illinois at Urbana-Champaign, Champaign, IL

Jae-Hong Min et al. / Life Cycle Reliability and Safety Engineering Vol.4 Issue 2 (2015) 40-51

