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1. Introduction

Structural displacement or deformation 
information is particularly important when permanent 
deformation occurs and is often more accurate than 
acceleration measurements in lower-frequency 
ranges. However, current SHM technologies rarely 
support displacement monitoring, primarily due to 
the difficulty in measuring absolute displacement; 
which mostly require fixed reference points. Though 
the reference-free nature of GPS-based methods 
conveniently measures absolute displacements, 
relatively low sampling rates are only available and 
the associate cost for survey-level dual-frequency 
GPSs that support sub-centimeter accuracy is still 
too high for routine use [1~3]. Single-frequency, low-
cost GPSs, generally used for navigation purposes, 
have shown the feasibility for dynamic displacement 
monitoring [4], however, the technologies of single-
frequency GPSs have not been sufficiently advanced 
yet for practical use in SHM applications. 

Computer vision-based methods have received 
broad interests in measuring static and dynamic 
displacements of structures due to various merits of 
the methods. The capability of non-contact, distant 
measurement of absolute displacements significantly 
reduces the difficulties in providing stationary 
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reference points; ensuring such reference points is 
a critical challenge for contact-type displacement 
sensors [5~8]. Moreover, these vision-based measuring 
systems are available at relatively low cost, combining 
a video camera, an optical zoom lens, lighting lamps 
and a precision target attached to the location of 
interest on the structures [9]. 

In most civil engineering applications, computer 
vision-based measuring systems have been considered 
particularly interesting for low-frequency vibration 
measurements. One of the reasons is that amplitudes 
of the high-frequency displacements are generally 
smaller than those of low-frequency displacements, 
causing difficulty in identifying the vibration with the 
limited resolution of conventional cameras. Another 
important reason is that the maximum frame rates 
(fps: frames per second) of the most of conventional 
video cameras are limited to 30 ~ 60fps at the best 
resolutions [10, 11]. Though such low frame rates 
would be sufficient for measuring low-frequency and 
high-amplitude vibrations of long-period structures, 
such as high-rise buildings and long-span cable-
supported bridges, ensuring higher frame rate is still 
essential for appropriate monitoring the dynamic 
behavior of many of small-to-mid scale common 
civil structures. 
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One of the issues in these types of dynamic 
measurements is that anti-aliasing filters are not 
available for vision-based measuring systems. The 
only way to minimize such aliasing problem is to 
increase the frame rate. A high-speed camera allowing 
up to 2000fps has been investigated for dynamic 
displacement monitoring [12]. However the practical 
use of such expensive cameras for civil engineering 
applications is still in question, because the level of cost 
and the difficulty of achieving real-time processing can 
be the main restraint for the success of the technique 
itself.

Recent advances in smartphone technologies 
provide various onboard sensing capabilities, 
including, but not limited to, accelerometer, 
temperature sensor, GPS, altimeter, gyroscope, and etc. 
Particularly, embedded cameras show great advances 
in providing higher-resolution and higher-speed 
video features, often better than many conventional 
camcorders. Moreover, their powerful processors and 
memories allow for onboard processing capabilities, 
eliminating the need for additional computers to 
perform extensive image processing. However, such 
advanced vision and embedded processing capabilities 
of smartphones have not been effectively utilized for 
dynamic displacement monitoring applications yet. 

This study investigates the feasibilities of such 
smartphones for dynamic displacement monitoring 
of civil structures. A new smartphone application is 
developed for real-time measurement and processing 
of dynamic displacements using the rear camera of the 
iPhone 6 Plus and OpenGL (Open Graphic Library) 

in the iOS environment, which enables easy and low-
cost monitoring of absolute dynamic displacements. 
For real-time applications, a user-selectable crop 
filter is implemented to optimize the image size and 
minimize associated processing time, considering the 
size and distance of target, which allow up to 120fps. 
To clearly discriminate from the background, carefully 
designed targets with unique color patterns are used. 
To make this smartphone application be more widely 
embraced for practical uses, several useful features, 
such as autonomous detection of target centroid, 
email transmission of measured data, user-adjustable 
color hue range, high-precision time stamps, and 
automated onboard calibration of measured data 
are implemented. Following a description of the 
software developed herein, the performances of the 
smartphone application are experimentally validated 
with shake table tests under both indoor and outdoor 
conditions. 

2. State-of-the-art Smartphone Technologies

Recent advances in smartphones technologies 
provide many attractive features in addition to its 
original function for mobile telecommunication 
(see Table 1). Various types of sensors embedded 
in the smartphones allow the devices to be used for 
various purposes; for example, motion sensing for 
game software, proximity sensing for screen power 
saving, GPS for navigation, fingerprint sensor for 
device security, and so on. Most of all, what makes the 
smartphone actually be smart is its onboard computing 
capability. The speed and size of their microprocessors 

Table 1. Hardware specifications of example smartphones

iPhone 5 [13] iPhone 5S [14] iPhone 6/Plus [15] Galaxy S5 [16] LG G3 [17]
Release 
Date

9/12/2012 9/20/2013 9/19/2014 4/11/2014 5/28/2014

CPU Apple A6:32-bit 
1.3 GHz dual core

Apple A7:64-bit 
1.3 GHz dual-core

Apple A8:64-bit 1.4 
GHz dual-core

1.9 GHz quad-core 
Cortex-A15 
1.3 GHz quad-core 
Cortex-A7 

2.5 GHz 
quad-core 
Krait 400

Memory 1 GB LPDDR2-
1066 RAM

1 GB LPDDR3 
RAM

1 GB LPDDR3 RAM 2 GB LPDDR3 RAM 3 GB (for 32 
GB model)

Other 
Sensors

- Gyroscope 
- Accelerometer
- Digital compass
- Proximity sensor
- Ambient light 
sensor

- Gyroscope 
- Accelerometer
- Digital compass
- Proximity sensor
- Ambient light 
sensor

- Gyroscope 
- Accelerometer
- Digital compass
- Proximity sensor
- Ambient light sensor 
- Barometer

- Gyroscope
- Accelerometer
- Digital compass
- Proximity sensor
- Ambient light sensor
- Barometer
- Infrared (IR) LED sensor
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Table 2. Camera performances of example smartphones

iPhone 5 [13] iPhone 5S [14] iPhone 6/Plus [15] Galaxy S5 [16] LG G3 [17]

Rear 
Camera

- 8 MP iSight 
camera with 1.5µ 
pixels
- Autofocus
- ƒ/2.4 Aperture
- True tone flash
- Hybrid IR filter

- 8 MP iSight camera 
with 1.5µ pixels
- Autofocus
- ƒ/2.4 Aperture
- True tone flash
- Hybrid IR filter

- 8 MP iSight camera 
with 1.5µ pixels
- Autofocus with focus 
pixels
- ƒ/2.2 Aperture
- True tone flash
- Hybrid IR filter

- 16 MP
- Autofucos
- ƒ/2.2 Aperture
- LED flash

- 13 MP
- Hybrid 
Infrared 
Autofocus
- ƒ/2.4 Faper-
ture
- Dual tone 
LED flash

HD Rear 
Camera 
Capture

- 720p@30/60fps
- 1080p@30fps

- 720p@30/60/120 
fps
- 1080p@30fps

- 720p@30/60/120/ 
240fps
- 1080p@30/60fps

- 
1080p@30/60fps
- 4K@30fps

- 720p@60fps
- 1080p@30fps
- 4K@30fps

GPU - PowerVR 
SGX543MP3

- PowerVR G6430 
(four cluster @ 450 
MHz)

- PowerVR Series 6 
GX6450 (4 clusters)

- ARM Mali 
T628MP6

- Adreno 330

and memories are sufficiently comparable with decent 
laptop computers. 

The particular focus of this study, related with 
smartphones’ performance, is in the cameras (see 
Table 2). For example, the latest version of Apple’s 
iPhone (i.e. iPhone 6/Plus) supports up to 240 fps at 
720p resolution and 120 fps at 1080p (HD) resolution. 
Samsung’s Galaxy S5 and LG’s G3 support up to 4K 
(UHD) resolution, but with slower frame rate (30 
fps). Moreover, the integrated graphics processing 
unit (GPU) can rapidly manipulate and alter memory 
to accelerate the creation of images in a frame buffer 
intended for output to a display. 

For this study, Apple’s iPhone is selected as its 
higher frame rate (up to 240 fps) is a more reasonable 
option for reducing the aliasing issues in dynamic 
displacement measurements. Moreover, Apple iOS 
mobile operating system is more appropriate for the 
development of this application because within a 
year of its release about 91% of Apple iOS users were 
running iOS 7, Apple’s latest release. Compare this 
with Android where five of the latest releases each hold 
about a 10% share of installations [18]. This operating 
system fragmentation often leads to developers having 
to support a variety of new and deprecated APIs to 
accomplish the same tasks. Although Google has 
taken steps to minimize the effects of operating system 
fragmentation [19], avoiding compatibility issues was  
avoidable.

The issues of fragmentation for Android devices 
are prevalent not only in software but also in the 

devices’ hardware. For example, when comparing 
the pictures taken with 4 different Android devices 
under the same conditions, the differences in color 
and brightness are immediately clear [20]. The core 
functionality of the application depends on computer 
vision analysis and introducing variability into this 
process would make the initial development of the 
application more difficult. 

Developing the app with consistent performance 
was established as a goal early on in the development 
process. By eliminating variables in the devices on 
which the application ran, the first version of the 
application could be more easily be developed. 
Developing the app so that it would perform 
consistently on devices was necessary for the first 
version. Developing for Android is a goal for future 
iterations.

3. Object Tracking using Computer Vision

To track the objects using computer vision, i) the 
objects of interest should be detected in video sequence 
first, then ii) classify the detected objects, and iii) track 
the movements of identified targets. Though this is 
a straightforward process, practical implementation 
of this object tracking is not that simple, because of 
possible variability of color, shape, and texture of 
the objects for each video frame [21]. Many different 
methods for object tracking using computer vision 
have been developed for past few decades, which can 
generally be divided into three categories; i) region-
based methods, ii) contour/edge-based methods, and 
iii) point-based methods. 
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Region-based methods basically utilize the color 
features of the objects, as all objects can be represented 
by their specific color distribution. This method may 
not be efficient when several objects move at the same 
time in a video frame, because of the possible occlusion 
among the moving objects. However, this approach is 
well known to be computationally much faster than 
other algorithms and effective for tracking fast moving 
objects.Despite the shape information possibly being 
distorted by fast movement, the objects can be traced 
due to their color [22, 23]. 

Shape of an object can be characterized by its 
contour/edge/outline. Edge-based tracking can be 
represented in active contour model [24] and is known 
to be efficient in tracking moving objects, because a 
number of points distributed along the edge of the 
object can provide higher probability of accurate 
tracking. However, the performance of this edge-based 
approach is very sensitive to the initial shape of the 
object and not so good for 3D movement tracking. 

Specific points can also be the characteristic feature 
of the object. This feature points should be sufficiently 
different from its neighbor. Usually, such feature 
points are extracted and detailed by descriptors that 
can recognize the object [25, 26]. Then the extracted 
feature points are matched from sequential frames 
to track the object. The success of this approach is 
dependent on how well the feature points of the object 
are extracted and matched, because many other similar 
points can be regarded as the feature points in the next 
frame, causing uncertainty.

If desktop or laptop computers are used for 
processing the images, real-time operation of the 
vision-based measuring systems may not be an issue. 
For example, a simple test shows total processing time 
per each frame to measure the dynamic movement 
of a target is just about 1~3 millisecond (ms) using a 
region-based object tracking method with a desktop 
computer that has Intel’s i7-4770 CPU (quad core 64bit 
3.40Hz), Nvidia GeForce GTX 650 Ti graphic card 
(GDDR5 128-bit, OpenGL 4.3, Memory Bandwidth 
86.4 GB/sec), and 16GB RAM. Though the hardware 
capabilities of recent smartphones are comparable to 
some laptop computers, the performance is less than 
conventional PCs. Considering the minimization of the 
processing time as the key factor in realizing higher 
frame rate for dynamic displacement monitoring using 
smartphones, an appropriate object tracking method 
should be selected. 

4. OpenCV vs. OpenGL (GPUImage)

The OpenCV library [27] is a popular open-
source library for computer vision applications 
with thousands of optimized algorithms. The iOS-
compatible release is written in C++, which can 
be compiled alongside Objective-C (the language 
used to write iOS apps), and contains many classes 
for easily integrating the device’s camera with the 
OpenCV library. Despite OpenCV being a powerful 
computer vision library, its main drawback for usage 
in developing a real-time computer vision application 
is its lack of usage of the iPhone’s GPU. Instead, all 
image processing is performed on the iPhone’s CPU. 
Simple image processing can be accomplished on the 
CPU in real-time such as adjusting the RGB values or 
inverting an image. But more complex algorithms like 
corner detection are more expensive and cannot be 
performed in real-time in the CPU side of iPhone.

In order to utilize the GPU to perform complex 
computer vision analysis, the GPUImage library 
[28] was used in this study. The GPUImage applies 
GPU-accelerated filters and other effects to images. 
Filters used with GPUImage are written using the 
OpenGL Shading Language, using OpenGL ES 2.0 
(iPhone 5 and iPhone 5S) or 3.0 (iPhone 5S and later), 
and are compiled at runtime. The combination of 
using these filters and processing them on the GPU 
allows complex image analysis algorithms to run at 
much higher speeds. Table 3 shows a comparison of 
rendering speeds on the CPU and GPU.

Figure 1. Example image rendering process using GPUImage
Source: http://nshipster.com/gpuimage/

Table 3. Rendering speed comparisonGPU vs. 
CPU (larger fps is better)

Calculation GPU (fps) CPU (fps)
Thresholding x 1 60.00 4.21
Thresholding x 2 33.63 2.36
Thresholding x 3 1.45 0.05

Source: http://nshipster.com/gpuimage/

By specifically targeting the hardware of the 
iPhone in this study, GPUImage allows for faster 
image processing compared to that of the CPU. To 
accomplish image rendering on the GPU, GPUImage 
is built upon an OpenGL rendering pipeline that takes 
a source image, passes it through a series of filters (or 
OpenGL shaders), and produces an output (see Figure 
1). The simple integration of custom OpenGL shaders 
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in a full-sized, 720×1280p, image in real-time. Because 
of the large amount of pixels that had to be processed 
in each frame, a crop filter was introduced into the 
rendering pipeline that could crop an image from 
720×1280p to 720×100p. The result was a significant 
drop in processing time per frame for the image 
processing filters. 

5.3 Target design

The color adjustment filters could successfully 
identify a target (e.g. red-colored targets) in an image 
by filtering the colors in the incoming image and 
produce a binary image.  The binary image indicated 
all areas that passed the filter by highlighting the 
valid areas as white and all ignored areas were 
black. Despite the ability to identify a target with a 
certain color, much of the resulting output from color 
adjustment filters contained false positives of features 
in the image that were not apart of the intended target 
but whose RGB values could pass the filter. Similarly, 
many of the image processing filters like the Harris 
Corner Detection filter could identify a square target 
by its corners but its resulting output would often 
include highlighted areas that met the threshold for 
detecting a corner but were not apart of the target. 

The best target to identify had to be both unique 
in its appearance and easy and fast to identify by an 
OpenGL Shader. While researching for good targets 
to use for identification, the yellow and black color 
pattern used in crash test simulations by automobile 
manufacturers became the best choice (see Figure 2). 
The pattern could be both easily identified by its color 
pattern and by the corners and edges of the target.

Identifying 
the target was 
best found by 
examining the 
h u e  v a l u e s 
of  each pixel 
in the image. 
While the hue 
values of a color 
slightly change 
w i t h  m i n o r 
variations, the 
RGB values of 
colors can change 
d r a m a t i c a l l y 
even with minute 
changes in their 
appearance. By 

Figure 2. Yellow-black color pattern target 
on a dummy for car crash test

Source: http://www.carkoon.com/blog/
nhtsa-introduces-new-crash-test-dummy-

child-safety-seat-evaluation

that GPUImage creates allows for easy access to the 
often complicated OpenGL rendering pipeline.

5. Samrtphone App Development for Real-time 
Dynamic Displacement Monitoring 

5.1 GPUImage library

The iOS platform and the GPUImage library were 
established as the starting point for the development 
of the application. Integrating the GPUImage library 
was accomplished using the Cocoapods dependency 
manager. After the base application was configured, 
all future modifications to the application were 
managed using a private GitHub repository. 

Various object tracking methods have been 
explored under the iOS environment to effectively 
detect the target of interest and track its centroid 
movements of each frame front the camera. This 
started with examining the filters included in the 
GPUImage library. 

Each filter in GPUImage uses OpenGL shaders 
to process the incoming image and produces a 
resulting image that can be extracted from the GPU 
and presented to the user. Color adjustment filters, 
such like RGB Levels, Hue, and Luminance Threshold 
filters, were studied to learn how OpenGL can 
manipulate the colors of an incoming frame from the 
camera. The color adjustment filters were able to run 
very quickly because of their heavy reliance on the 
GPU for manipulating the image. Additionally, image 
processing filters such as the Harris Corner Detection, 
Sobel Edge Detection, and Hough Transform Line Detection 
filters showed how computer vision algorithms could 
be implemented with OpenGL. The main difference 
between the color adjustment and image processing 
filters was the reliance of the image processing filters 
on the CPU to get access to the raw pixel data from 
the GPU and the rasterization across each pixel in 
the image per frame processed. This bottleneck was 
necessary so that data like the number of corners and 
the locations of these corners in the image could be 
determined. By simply running the image processing 
filters with just their OpenGL shaders and not doing 
any processing on the CPU, the filters were able to 
run very quickly. However, introducing the reading 
of raw pixel data from the GPU onto the CPU led to 
significant drops in the filters’ performance.

5.2 Crop filter

None of the filters included with the GPUImage 
library could accurately and efficiently identify targets 
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filtering an image by using a hue range rather than an 
RGB range, changing the colors that were to be filtered 
became much easier to change on the fly. The hue scale 
ranges from 0 to 360 (see Figure 3) and by passing 
upper and lower hue values to an OpenGL shader, 
the image could filter out all hues outside of a range. 
In the OpenGL 
s h a d e r ,  t h e 
v a l u e  o f  a 
pixel’s color 
h a d  t o  b e 
converted from 
RGB to hue 
using a simple 
algorithm. This 
was necessary 
because of the 
way OpenGL 
handles colors. 
For each pixel being processed, OpenGL stores its 
colors value in RGB. As a result, in order to filter out 
hue values outside of a given range, the shader must 
calculate the pixel’s hue value. 

To identify the center of the color patterned 
target, a combination of using two hue ranges and 
the GPUImage3x3ConvolutionFilter were required. 
Two hue ranges were required so that both of the 
colors in the target could be identified. So a new 
custom filter was developed by modifying the 
GPUImage3x3ConvolutionFilter, so that the hue values 
of neighboring pixels in trial-directions could be 
accessed as shown in the Figure 4. The neighboring 
pixels of a given pixel were used for identifying the 
center of the target. For example, as shown in the 

Figure 3. Hue chart of color
(Source: http://www.fmwconcepts.com/

imagemagick/huemap/)

Figure 4.Modified GPUImage3x3 Convolution Filter

Figure 5, near the center of the left target, the blue 
and yellow colors border each other. This pattern of 
alternating colors (e.g. hue value difference between 
blue and yellow: 180) can be used to effectively 
identify the center of the target. 

Figure 5.Example pattern of alternating colors: yellow &blue (left), 
green &purple (right)

5.4 Target centroid calculation

Then, pixels near the center of the target that could be 
identified using this color pattern were highlighted 
in the OpenGL shader. Pixels that were not identified 
by the shader as being pixels near the center of the 
target were not highlighted. After the shader had 
processed a frame, the CPU would load the processed 
image into memory and find all of the pixels that were 
highlighted. The 2D coordinates of each highlighted 
pixel were averaged to find the center of the target. 
The coordinate of the center of the target would be 
recorded by the application for the use of calculating 
the displacement of the target at any given frame.

5.5 Real-time displacement calculation and 
onboard calibration 

To calculate real displacement values, two of these 
targets were required. The second target used the same 
pattern but with different colors as shown in the Figure 
5 (right). The colors used in the second target had 
similar characteristics to those in the first target in that 
the level of contrast between the two colors (i.e. green 
& purple) was very high. By using high contrast colors, 
the two colors in each target could easily be identified 
and the risk of the two colors blending together was 
reduced. By knowing the distance between the two 
targets in the frame and keeping the distance fixed, the 
real displace ment of the two targets can be calculated. 
With GPUImage, the custom OpenGL shader for 
finding the center of the two targets, and the ability to 
calculate real displacement of the target in the camera 
frame, the core functionality of the application was 
complete.

5.6 Real-time display of processed displacement

Displaying the calculated information on the 
screen to the user required Apple’s Core Animation 
library and the open source Core Plot library. Core 
Animation was used to display three dots on the 
screen that would show where the centers of the 
targets were. The first two dots were located at the 
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center of each colored target and a third dot was placed 
in between the two targets to indicate the center of the 
entire pattern (see the top of Figure 6). 

Figure 6.Screen shot of the developed iOS app: before running the app 
(top), real-time display of measured displacement (bottom)

Once the application is started, a forth dot is 
appeared where the third dot was initially located, 
which is fixed. Then actual displacement is calculated 
with respect to the fourth dot (i.e. distance between the 
third and fourth dots), and is displayed at the bottom 
of the application screen in real time as shown in the 
bottom of Figure 6. 

5.7 User configurable setting parameters

With each of these components added to the 
application, many parameters were introduced to 
control the functionality of each component. A settings 
feature was introduced into the application that 
managed how each component should perform. The 
settings were separated into three sections: Camera, 
Filter, and Graph. The options under each section are 
listed in the Table 4.

5.8 Setting parameter optimization

While the application could identify the target in 
the camera frame and calculate its displacement at 
each frame, its performance was slightly above the 
target of being below 10 milliseconds on the iPhone 
6 Plus. The slowest portions of the application were 
identified through profiling the application using the 

Table 4. Setting parameters

Camera Settings

Frame Rate Manually adjust the camera’s frame 
rate 30, 60, 120 and 240 fps.

Crop Size 
(width & 
height)

Change the size of the crop filter 
Width (px):100/200/400/720/1280
Height (px):100/200/400/720

Auto-Focus 
Range

Change the autofocus range of the 
camera between near, far and none.

Show 
Camera 

View

Whether or not the feed from the 
camera should be shown on the 
screen.

Show 
Benchmark

Whether or not the current and 
average processing time from cap-
turing to filtering, to displaying 
the image should be calculated and 
shown on the screen.

Filter Settings

Show 
Filtered 

View

Whether the resulting output from 
the OpenGL shader should be shown 
in place of the raw camera view.

Pixel 
Search 

Distance

The distance between neighboring 
pixels used in the OpenGL shader.

Set Filter 
Colors

Select the hue ranges of the two 
colors used in each target.

Graph Settings
Show Graph 
View

Whether the graph should be 
updated with displacement 
calcultions from each frame.

Target 
Distance (cm)

The distance (in centimeters) of the 
two colored targets in the camera 
frame.

Show X & Y 
Displacement

Whether the X, Y, or both 
displacement lines should be 
calculated and shown on the graph.

Instruments software included with Apple’s Xcode. By 
identifying potential areas of slow performance and 
memory leaks the application’s processing time from 
capture to display was drastically increased. 
• The biggest improvement in processing time was 

achieved simply by not displaying the camera 
feed on the screen. This resulted in about a 2 to 3 
millisecond drop in processing time. 
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• Another improvement in processing time was 
achieved by running all camera related operations 
on a separate thread and running all UI (user 
interface) operations on the main thread. 

However, much of the slowest portions of the 
application could not be resolved so easily. Portions 
of the application could not be removed as they were 
integral to the application. Reducing the processing 
time in components like reading the raw pixel data 
to the CPU from the GPU, calculating the center of 
each target on the CPU by averaging the coordinates 
of all found pixels, and performing displacement 
calculations were difficult due to their lack of 
complexity and necessity to the functionality of the 
application.

After resolving performance issues in the 
application, the application’s processing time was 
reduced to below 7 milliseconds on the iPhone 6 Plus. 
Due to the constraints of the hardware on the iPhone 
5, such results could not be achieved. The Table 5 
shows a breakdown of the processing time (average 
from several tests) for the application.

Table 5.Processing time breakdown 
(with 720×100p @ 120 fps)

Step iPhone 5 iPhone 6 
Plus

GPUImage (no display) 1.10 ms 1.10 ms

GPUImage + Crop Filter 
(no display)

1.34 ms 1.42 ms

GPUImage + Crop Filter + 
Custom Filter (no display)

35.2 ms 6.30 ms

Total w/ Displaying 37.1 ms 11.25 ms

Total w/o Displaying 35.2 ms 6.30 ms

5.9 Email transmission of measured data  

Additional features were developed to allow the 
user to view the graph full screen after a recording 
session had ended and to export the collected data to 
a CSV file that can be emailed to a personal account for 
further analysis. These changes made the application 
suitable for testing and practical use.

Figure 7 shows the simplified block diagram of the 
developed iOS application in this study. 

6. Experimental Validations 

In order to evaluate the performances of the 
developed iOS app, including sampling time accuracy 

Figure 7. Software block diagram of developed iOS app

and the ability to track the dynamic movements of 
targets, a series of laboratory-scale tests have been 
carried out using a shaking table with single-frequency 
and multi-frequency sinusoidal motions.  

6.1 Experiment setup

An APS Dynamics’ APS 400 Electro-Seis shaker 
was used for the evaluation tests (see Figure 8). The 
input excitation of the shaker was amplified by the 
APS 145 amplifier. To compare the performance of 

the developed iOS 
App with that of a 
conventional dis-
placement sensor, a 
laser displacement 
sensor (KEYENCE, 
IL-100, 4-μm reso-
lution) was used 
as a reference. The 
analog voltage out-

puts from the laser sensor were measured by the 
National Instruments’ NI-9234 ADC module (24-bit 

Figure 8. Shaking table test setup
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Delta-sigma ADC) with CompactDAQ chassis (cDAQ-
9178 model). At the same time, NI-9269 voltage output 
module, which was housed in the same CompactDAQ, 
was used to generate the excitation signals for the 
shaker. 

To overcome the limited resolution of the 
iPhone camera for long-distance and small-target 
measurements, optical zoom lenses were used in 
conjunction with the iPhone (see Figure 9). With 
commercially available low-cost zoom lenses, 

Figure 9.12× (left) and 50× (right) optical zoom lens designed 
for smartphones

precisely designed smartphone cover cases that allow 
easy connection of the lens to the phone come with 
the package. 12× and 50× zoom lens were considered 
initially, but the 50× lens only was used for this 
tests. 

6.2 Sampling Time Accuracy

Consistency of the sampling rate or sampling time 
is important to ensure the quality of dynamic vibration 
measurements. Even when conventional analog-
to-digital converters are used, the time intervals 
between adjacent samples are not always consistent 
[29]. Particularly, because this kind of computer 
vision-based measuring systems handle extensive 
image processing, making sure the consistency of the 
sampling time is important. 

Figure 10 shows the example record of the sampling 
time for 60fps and 120fps cases (720×100p crop filter 
used for both). The case with 60fps (dotted line) shows 
very consistent sampling time of 16.67 milliseconds 
over entire measurements. However, when 120fps 
(solid line) was used, little inconsistencies are observed 
in the beginning of the measurements for couples of 
samples, of which phenomenon is attributed by the 
dropped samples (see the bottom of Figure 10). To 
achieve 120fps, all the image processing required to get 
the displacement information should be done within 

Figure 10.Sampling time accuracy (bottom: zoomed around 
sample # 350) 

8.33ms for each frame. If the processing takes more 
than 8.33ms, then the software automatically drops 
the corresponding sample out, to not cause any delay 
or interference to following samples. Because the case 
of 60fps ensures sufficient time for processing, such 
dropped samples were not observed in this test.

6.3 Shake Table Tests

For the initial shake table tests indoors, the iPhone 
with the zoom lens was placed 3.0m away from the 
target attached on the shake table. The target size was 
1.0×2.5cm, which was composed of two rectangular 
alternating color patterns having 1.5cm center distance 
between them. 720×100p crop filter was used to track 
the target in a horizontal direction in an optimized 
way. The distance between the two color patterns 
(i.e. 1.5cm) was occupied by about 300~400 pixels, 
corresponding resolution for this particular set up 
could be estimated about 0.0375~0.05mm; actual size 
of each pixel was autonomously calibrated in the 
software and used for displacement calculation. 

Figure 11 shows the shake table test results for the 
1Hz, 10Hz, 20Hz sinusoidal excitations, and multi-
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tone excitation composed of 1~20Hz (0.2Hz step) 
sinusoidal signals. Vibration levels were kept below 
2 mm amplitude (peak to peak), and 120 fps was used 
in this test. As shown in the Figure 11, the dynamic 
displacements measured by the iPhone 6 Plus with 
the developed iOS app (solid line in the Figure) agree 
very well with those by the laser displacement sensor 
(dotted line in the Figure). 

Then, the shake table set ups were moved out for 
outdoor testing with longer target distance. The shake 
table set ups were placed in the outdoor hallway of the 
civil engineering building at the University of Arizona, 

of which hallway can 
ensure up to 50m 
clear line-of-sight (see 
Figure 12). Target 
distance from the 
iPhone camera was 
33m and the same 
zoom lens was used, 
but with little bigger 
target (4×10cm target 
size and 6cm center 
distance between 
two color patterns). 

Figure 13 shows some example results from 
the outdoor shaking table tests. The performances 
of the iPhone with the developed app were not so 
impressive, compared with indoor tests. Particularly 
when 120fps was used, substantial high-frequency 
noises were observed in the measurements by iPhone 
(solid line in the Figure) as shown in the Figure 13 a) 
and c), while the results from 60fps were acceptable, 
successfully resolving millimeter-level displacements. 
Possible reasons for these high-frequency noises in 
outdoor tests may be attributed to, but not limited to, 
possibilities that i) the captured image at 120fps might 
be exposed to less amount of light as the higher frame 
rate allows the shorter exposure time, which could 
change the color properties in the image, ii) the phone 
might be subjected to unexpected high-frequency 
vibrations due to wind and/or building vibrations, 
resulting in such noisy measurements; though it is a 
very little vibration, its effects on the captured images 
would be substantial, as the target is located further 
and further away. 

No matter what the reasons for causing such high-
frequency noises, possible vibrations of the phone itself 
should be compensated for the practical use of this 
approach for dynamic displacement measurements in 

Figure 11.Indoor shake-table test results (3m from target): 
(a) 1Hz sine at 120fps, (b) 10Hz sine at 120fps, (c) 20Hz sine at 

120fps, and (d) multi-tone sine signal at 120fps.  

Figure 12.Shake-table test setup in 
the outdoor hallway
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the field. Other sensors (e.g. accelerometer, gyroscope) 
embedded in the smartphone (see Table 1) may be 
utilized for the phone vibration compensation. To 
ensure sufficient amount of light for outdoor tests, 
a self-light emitting target (e.g. LED) may be used 
for future tests. In addition, a low-pass filtering can 
be implemented in the iOS app to reduce such high-
frequency noises.  

7. Conclusions 

The feasibility of smartphone technologies for 
real-time dynamic displacement monitoring has 
been investigated in this study. A new smartphone 
application was developed under iOS environment 
for the iPhone. Various methods for moving object 
tracking have been explored, then, a region/
color-based tracking method was adapted in this 
study because of its computational efficiency in 
image processing and robustness in tracking fast 
moving objects. In order to fully utilize the GPU 
capabilities of smartphones, the GPUImage library 
was used in developing the iOS app. A crop filter 
was implemented for users to compromise between 
the image size and frame rate without sacrificing 
accuracy. Onboard calibration of the image pixel size 
to a given-dimension target was implemented in the 
developed iOS app. And other various features for 
controlling camera, filter, and graph settings and email 
transmission of measured data were also incorporated 
in this iOS app development. All the functions 
required for measuring the dynamic movements of 
the target could successfully be operated in real time, 
allowing up to 120fps with iPhone 6 Plus. And the 
performances of the iPhone hardware and the iOS 
app developed herein were experimentally validated. 
Although some high-frequency noises were observed 
from outdoor shake-table tests, the performances 
of the developed app were comparable to those of 
a conventional laser displacement sensor, allowing 
down to sub-millimeter resolutions at 33m distance 
from the target. The possibilities and limitations of 
the smartphone (iPhone) and its camera for real-time 
dynamic displacement monitoring applications have 
been explored in this study, pointing in the direction 
of the following research. 
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